Data Clustering Analysis

Input Data (JSON Array)

Clustering Configuration

Example Input

[
  {
    "id": 1,
    "age": 25,
    "income": 50000,
    "spending": 35000,
    "savings": 15000,
    "satisfaction": 4.2
  },
  {
    "id": 2,
    "age": 35,
    "income": 75000,
    "spending": 45000,
    "savings": 30000,
    "satisfaction": 4.5
  },
  {
    "id": 3,
    "age": 45,
    "income": 100000,
    "spending": 60000,
    "savings": 40000,
    "satisfaction": 4.8
  }
]

Clustering Methods:

  • K-Means: Partitions data into k clusters by minimizing within-cluster variance
  • Hierarchical: Builds clusters by progressively merging similar points
  • Silhouette Score ranges from -1 to 1, with higher values indicating better clustering